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A more conceptual and less computational proof is given for the last part of de Branges’
proof of the Bieberbach conjecture, i.e. where the special functions enter and the Askey-
Gasper inequality is applied. General solutions of de Branges’ system of differential
equations are brought in 1-1 correspondence first with Fourier-sine series and next with
spherical function expansions on the sphere S3. Restriction of spherical functions on §° to
$? and positive definiteness then finish the proof.
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1. INTRODUCTION

Several people asked me about a possible group theoretic interpretation
for the last part of de Branges’ proof of the Bieberbach conjecture [ 3], i.e.
for the part where the special functions enter and the Askey-Gasper [1]
inequality is applied. A partial answer was given in Askey and Gasper [2,
§2]. They reduce the question of the positivity of the hypergeometric
functions

JFon—rr+n+2n+52n+L,n+3s7h, (L.1)
s=1,nreZ, 1 <n<r,to proving that for each n,r the expansion
Criix) = Y aCilP™"(x) (1.2)
I=n
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holds with nonnegative coefficients a,. Here C% (x) is a Gegenbauer
polynomial. This nonnegativity follows without computation by
observing that (1.2) can be interpreted as restricting a (zonal) spherical
function on the sphere $2"*3 = SO(2n + 4)/SO(2n + 3) to S?"*2 and
then expanding it in terms of the spherical functions on $2"* 2. Since the
zonal positive definite functions on a sphere are precisely the functions
having spherical function expansions with nonnegative coefficients and
restrictions of positive definite functions on a sphere to a lower
dimensional sphere are again positive definite, the nonnegativity of the
a’s follows. If next, in (1.2), x is replaced by 1 — (1 — x)s~! and both
sides are multiplied by (1 — x*)"~*/® and integrated with respect to x
from —1to I then, at the left, the ;F, in (1.1) appears while, at each term
at the right, a 3F, arises which, by Clausen’s identity, can be written as

const(CIHD((1 — s™1)2))2 (1.3)
with positive constant.

Two elements remain unsatisfactory about this Askey—Gasper
approach. First, de Branges [4] and Koornwinder [8] show that (1.2) is
not really needed for all n but only for n = 1, so it is a matter of restriction
of spherical functions on S° to S*. However, this reduction is performed
by a trick which needs deeper explanation. Second, one would like to
have a better understanding why ;F, functions arise which can be
written as squares.

In the present paper I will explain both things. The key observation is
that general solutions of de Branges’ system of differential equations are
obtained as Fourier-sine coefficients of functions of argument
transformed under the action of a one-parameter semigroup. This can be
rewritten in group theoretic form, where rotation groups SO(6), SO(5),
SO@), SO(3) are involved and then an extension of the positive
definiteness argument we mentioned yields the result. I conclude the
paper with a similar, but not group theoretic characterization of the
solutions of de Branges’ more general system of differential equations
in [4].

It is tempting to extend the group theoretic interpretation presented
here to the earlier parts of the proof of the Bieberbach conjecture. For
instance, do univalent analytic functions on the disk conceptually live on
a low dimensional sphere and can Loewner’s differential equation be
interpreted in group language? However, if anything is possible in this
spirit then it must be tied up with the logarithmic case. It follows from
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[4] that vth powers of univalent functions are connected with “spherical
functions™ on “spheres” of fractional dimension 2v + 4, the case v = 0
being the logarithmic case.

Many mathematicians have checked de Branges' proof of the
Bieberbach conjecture, but did not have the courage to do the (not too
tedious) computations leading to the Askey-Gasper inequality for
themselves. The proof presented here may serve as a less computational
and more conceptual alternative. The remaining computations only
involve trigonometric identities.

For convenience of the reader without knowledge about positive
definite and spherical functions on compact groups, Section 3 is inserted
with the relevant material.

2. AN INTEGRAL TRANSFORM YIELDING THE
GENERAL SOLUTION OF DE BRANGES’ SYSTEM OF
DIFFERENTIAL EQUATIONS

In [3] de Branges considered the system of differential equations
0a(t) + n7 M0, (t) = 6,4, (t) = (n 4+ 1) ol (1), .1

t2z1,n=1,2,....Callasolution {s,} admissible if 5, is not identically
zero, o, is identically zero for n sufficiently large and o, (t) < 0 for all
t21,n=12,.... In [3, Theorem 2] de Branges states that any
admissible solution of (2.1) yields a Milin type inequality for the
logarithmic power series coefficients of a univalent analytic function on
the unit disk which sends 0 to 0. The Milin inequality itself follows by
showing that the unique solution of (2.1) with initial values

0,(1) = max(r + 1 — n,0), n=12... (2.2)

is admissible. For this solution we have that —s"* !¢/ (s) equals a positive
factor times expression (1.1), cf. [ 3, proof of Theorem 3], but this will not
be needed here. By (2.2) and (2.1):

n n=rr—2r—4,...
e — ? ’ ° ’ 23
o) {O, otherwise. (23

Note that, if {5, } is a solution of (2.1) then other solutions are given by
the functions ¢+ g, (st) (s = 1) and 1+ to,(1).
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Tueorem 2.1 Let PeC'([~1,1]) and define functions o, = o,[P]
(n=1,2,..)on[1,o0) by

o,(t) = Zn“‘t“f P(1 —t7' + 17 ' cos ) sin(nf) sin 0 d6. (2.4)
0
Then the functions o, solve (2.1) with initial values
o,(1)=2n""1 J P(cos 6) sin(nf) sin 6 d6. (2.5)
0

Proof Let 0,(t) be defined by (2.4). Straightforward integration by
parts yields

Gu(t) + 17 10,(1) — Gy () + (1 + 1) Moy (1)

=2n“‘t"f P(1 -t 4+t 'cosh)
0

| "= Ginmoysing + L2 (sin(n9) (1 — cos 0))
n nao

+2 . . I a .
] sin(n + 1)fsin 6 + mgé(sm(n + 1)8(1 — cos 0)):! do.

It follows from elementary trigonometric identities that the expression in
square brackets vanishes. B

Observe that

(0.[P])(st) = (0,[Ps]) (1), where P(x)=5s"'P(1 —s ! +s7'x), s>
and J
—t(o,[P])(t) = (0,[Q]) (1), where  Q(x) := — ((x — 1)P(x))
(7] [0] I »
If a solution {g,} of (2.1) is identically zero for n large then, by (2.5),
0, = 0,[ P] with P given by the terminating series

& sin(nf)

= 1

P(cos ) n; o) =2,

while, in view of (2.6), —ta,(r) = (0,[Q])(t) with Q given by the
terminating series

2.7)

sin(nf)
sinf

Q(cos0) = } (=a,(1) (2.8)
n=1
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Obviously
__sin(nf)

U,_(cos8): -
1(cos 6) sin 6

(2.9)

defines a polynomial U,_, of degree n— 1 which satisfies the
orthogonality relations

2 1
;J‘ U(x)U(x)(1 = x*)' 2 dx = §,, (2.10)
-1

(Chebyshev polynomials of the second kind). So (2.7) (or (2.8)) is
terminating iff P (or Q)is a polynomial. If Q is a polynomial then, by (2.6),
it determines a unique polynomial P given by

1

P(x)= (1 - X)"IJ Q(y)dy, (2.11)

X

and (2.8) will be valid with ¢, := o,[ P]. We can now conclude:

ProrosiTION 2.2 Formula (2.8) establishes a 1-1 correspondence
between admissible solutions {o,} of (2.1) and nonzero polynomials Q such
that (6,[Q)(t) =0 forallt =2 1,n=1,2,....

If {o,} is the solution of (2.1) determined by (2.2) then (2.3) and (2.8)
yield
[(172)r=1)] in(r — 2k)0
OcosB) = Y (r—2kySmr =20

k=0 sin 6
[(1/2)r = 1))
= Y U_;-n(cosOU,_,_5(1). (212
k=0
Hence Q is a polynomial of degree r — 1,Q(—x) = (—1)"~'Q(x) and, by
(2.10) and (2.12), we have for any polynomial p of degree <r

1
J Q(x)p(x)(1 = x*)'*dx = p(1) or 0
-1

according to whether Q and p have the same or opposite parity,
respectively. It follows that Q is an orthogonal polynomial of degree
r—1 on the interval (—1,1) with respect to the weight function
(1 — x%)32, normalized by
[(1/2)r-1)]
o= Y (r=2kP=gr(r+D(r+2). (2.13)

k=0
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Generally, Gegenbauer polynomials C;, are orthogonal polynomials of
degree n on the interval (—1, 1) with respect to the weight function
(1 = x?)*~4/2 normalized by
(2A),

Ci() ==
n.

, (2.14)

where (a), ;= ala + 1):--(a + k — 1). Hence Q given by (2.12) equals

0(x) = C}_,(x) (2.15)
and
sin(n@)

sinf
So,avoiding the expression (1.1), we have to verify that (¢,[Q]) (t) = Ofor
allt 2 1,n=1,2,... with Q given by (2.15).

U,-,(cosf) = Ci_,(cos) =

(2.16)

3. GROUP THEORETIC PRELIMINARIES

Let U be a compact topological group with closed subgroup K such that
for each irreducible unitary representation © of U the representation
space J(r) contains an at most one-dimensional subspace of K-fixed
vectors. Then the pair (U, K) is called a (compact) Gelfand pair. If 5#(n)
contains a K-fixed vector e of unit norm then the function

¢W) = (n(ule,e), uel, (3.1)

is called the spherical function on U with respect to K associated with 7.
Let du denote Haar measure on U such that [, du = 1 and let Z(U) ==
I2(U; du). By Schur’s lemma, distinct spherical functions are mutually
orthogonal elements of I?(U).

Call a function on U U-finite if it is a finite linear combination of
functions u+ (n(u)e,,e,), where = is an irreducible unitary
representation of U and e,, e, € 5#(r). If Vis a closed subgroup of U then
the restriction of a U-finite function to V is V-finite. The U-finite K-bi-
invariant functions f on U are precisely the finite linear combinations of
spherical functions ¢,:

f@)= 3 (gsl) cs¢5),  uelU. (3.2)

finite

Then
€ = J S (u)gs(u) du. (3.3)
U
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A continuous function f on U is called positive definite on U if

j fluy tuy)du(uy) dp(u,) 2 0 (3.4
UJU

for all complex Borel measures p on U. Clearly, the restriction of a
positive definite function on U to a closed subgroup V is positive definite
on V. If the spherical function ¢ is given by (3.1) and {e,,...,e,} is an
orthonormal basis of #(r) then

ou; 'uy) = Z (m(u,)e, e;)(m(uz)e, e;), up, u € U. 3.5)
j=1

It follows that spherical functions are positive definite and also functions
of the form (3.2) with all ¢; = 0. Conversely, if f is a positive definite
function on U and ¢ a spherical function then

J fW)pu) du = J fluz 'uy)plus 'uy) du,
U U
= J f(“2_1u1)¢(“2—1u1)du1 du,
vJu

. f F5 ) @y )er ;) (nlug)e, ;) duy duy > 0
ji=1Julu

for all u, € U. It follows in particular that f of the form (3.2) is positive
definite iff all ¢; = 0.

We need a few facts about spherical functions on the sphere $¥ 7! =
SO(N)/SO(N — 1), which can be obtained from the theory of spherical
harmonics, cf. for instance Miiller [9]. Let U := SO(N)), the group of real
orthogonal N x N matrices of determinant 1, with subgroups

e} 0 )
'_(0 SO(N — 1)

and
cos —sinf 0 I
A:={ay;=1|sinf cosd 0 ‘
0 0 Iy_,

Suppose N = 3. Then (U,K) is a Gelfand pair, there is the Cartan
decomposition U = KAK, whereue U determines unique 6 € [0, 7] such
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that ue Ka,K, and, for f e C(U//K) (continuous K-bi-invariant on U):
J‘U fu)du = @%’)—“}Sﬂ flay) (sin )N =2 d6. (3.6)
The spherical functions ¢ on U with respect to K are completely
determined by their restrictions to A and are there given by
Play) = CH*M ™Y (cos 0)/CLH M1, (3.7
where n =0, 1,... and C{!*M~! denotes a Gegenbauer polynomial.

4. PROOF OF THE POSITIVITY RESULT

In this section we make silent use of the group theoretic conventions and
results summarized in Section 5. Let U := SO(5) with subgroups
0

. 1 0 _ I,
K"( ) M"(O 80(3)>’

0 SO®@)
I cosf —sinf O l
=|sinf cosf 0

A= ay = s
Ve o 1)
1 0 0 0
0 cosf —sinf O

B = bg = . ’
0 sinf cosf® O

0 o0 0 I,
andlety, (n = 1,2,...) be thespherical functions on K with respect to M

such that
_ sin(nf) @

Yalbe) = Cr_1(cos 0)/Cr_ (1) —.
nsin 0

Let pe C(U//K) and put
P(cos 0) := p(ay). 4.2)

Then, for each 7, the function k +> p(a,ka, ') is M-bi-invariant on K,
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since 4 and M commute. Hence, by (3.6), (4.1), (4.2):

J pla,ka; W, (k) dk = 2n‘1n“‘f pla,bya, ') sin(nd) sin 6 dO
K 0

=27 " p"! f P(cos? n + sin? i cos 6) sin(nf) sin 0 d6.
0

Compare with (2.4). Then it follows that
(0,[P])(sin™2 ) = nsin? 17'[ pla,ka; "W, (k) dk. (4.3)
K

For each 7, (a,Ka, ', M) is a Gelfand pair with spherical functions
a,ka; '+, (k). Let P be a polynomial (or, equivalently, p a U-finite
function in C(U//K)). Then, by (4.3), (6,[P])(z) > 0 for all n,t iff p
restricted to any subgroup a,Ka, ! is positive definite.

By Section 2, for settling the Milin conjecture, we have to verify that
(0,[Q])(t) = O for all n,t, with Q given by (2.15). The corresponding
qe C(U//K) is given by

q(k,agk,) = C*_\(cosf),  kyk,eK. (4.4)

We recognize the C2_, as a spherical function 3, on SO(6) with respect to
SO(5) (up to a positive factor). Let G :=SO(6), U embedded as a

subgroup of G by
U e SOB) 0
Lo 1

10
V= (o 30(5)>‘

Then y,(v,ayv,) = C?_,(cosB), v,,v,€ V. Since Vn U = K, it follows
that ¥,|, = g, so q restricted to a,Ka, ', which equals , restricted to
a,Ka; ', is positive definite for each 1, since , as a spherical function is

positive definite. Hence (o,[@])(t) = 0 for all n,t and our promises are
fulfilled.

and let

5. THE SUM OF SQUARES

In de Branges [4] and Koornwinder [8] it was pointed out that (1.3)
multiplied by s ™" also yields a solution of (2.1), while Askey and Gasper
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[1], [2] wrote (1.1) as a sum of expressions (1.3). These things also fit
nicely into our picture of Section 4.

Replace P, p in (4.2) and (4.3) by @, ¢. In view of Proposition 2.2 and
(4.3), any U-finite non-zero g € C(U//K) which is positive definite on all
subgroups a,Ka, ' yields an admissible solution {g,} of (2.1) and
conversely. In particular, if g is positive definite on U then it is positive
definite on all subgroups a,Ka, ' (but not conversely), and the positive
definite U-finite ¢ on U are of the form

q= Z a o, a =0, (5.1)

finite

where ¢, is the spherical function on U with respect to K given by
di(aq) = Ci% (cos 6)/C3A (1), I=12,.... (5.2)
Write @(cos 6) := ¢,(a,). Then, by (4.3):

(0,[®,])(sin"? 7) = nsin®n f $ulaka; (k) k. (5.3)
K

It follows from [7, §3.3] that

f ¢l(ar]lkar;;l)wn (k) dk = ¢;l (an1)¢7(a112) > (54)
K

where ¢} is an associated spherical function. Hence combination of (5.2)
and (5.3) gives

(0,[®,])(sin ™2 n) = nsin® n|¢}(a,)*. (5.5)

This shows once more that (o,[®,])(z) = 0.
For g of the form (5.1):

(.[Q] sin ™2 1) = msin® 1 3 4/l (a,). (5.6)
1

In particular, if ¢ is given by (4.4), then g, as the restriction of the positive
definite spherical function y,, is positive definite on U, so g, = Oin (5.1).
Then (5.6) is the Askey—Gasper expansion of (1.1) in terms of (1.3).

The relationship between |¢](a, )|* and (1.3) can be seen more explicitly
by rewriting (5.3) as

(@, [@)(sin 2 ) = 22 H(C}A (1))~ sin? g

X j CP (cos? n + sin? ncosO)CL_ (cosH)sin? 8dO. (5.7)
0
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We recognize the right-hand side of (5.7) as an integrated form of the
addition formula for Gegenbauer polynomials [ 5, 10.9 (34), watch for the
misprint 2™ which should be 2>™] and obtain

¢/ (a,) = const(sin n)" "' C; ¥/ (cos 7). (5.8
6. A MORE GENERAL SYSTEM OF DIFFERENTIAL
EQUATIONS AND ITS SOLUTIONS
In [4] de Branges considers the system of differential equations
o,(t) + n" o, (1)

_ Rv+n)Q2v+n+1)
B n(n + 1)

(Ous 1) = (v 4+ n+ 1) 0,4, (1), (6.1)

t=>1,n=12,...,v> —} Forv = 0itreduces to (2.1). Call a solution
o, admissible if ¢, is not identically zero, o, is identically zero for n
sufficiently large and d/dt(t~**s,(t)) < Oforallt > 1,n = 1,2,... .In[4,
Theorem 2] de Branges states that any admissible solution of (6.1) yields
an inequality for the coefficients a, in

V(@) = (fO)] = ¥ @z,
n=1
where £ is a univalent analytic function on the unit disk sending O to 0.

We can formulate a generalization of Theorem 2.1:

TueOREM 6.1 Let PeC'([—1,1]) and define functions o, = o,[P]
(n=1,2,...) on [1, ) by
_ nt(n— 1TV +2)
on(t) = Qv + 1),Q2v + 1),_ 7T + 3)

1
x 7! J Pl =t 11 = x)Cy L)l = x?) D gx
o 6.2)
Then the functions a, solve (6.1) with initial values

nln—DITHG+2)
@v + 1),2v + 1), 7' 2T +3)

o,(1) =

1
X J P(x)CLEA(x) (1 — x?)" 2 dx. 6.3)

-1
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Proof Let o, be defined by (6.2). Then

Qv +n)2v+n+1)
n(n + 1)

o, (t) + n" Yol (t) —

X [0s1(t) — v+ n+ 1) o4, (0)]

_ o nln=DITe+2! o
T Qv+ 1),Qv + 1), 7P + 3)J P(1—-1t77(1 - x))

[(1 —n (1~ X7 )(C;ﬁi(X)(l — x?)Ham)

- <1 +QRv+n+ )7 - x)%)(C)’,“(x)(l - xz)"””z’):l dx.

The expression in brackets vanishes because of [5, 10.9 (11), (35)]. H
Note that

— e [P0 = [0
with (64)
0(x) = (1= )7 2 (1 = ) ' P(x).
X

We might now produce the various special Q which yield the special
admissible solutions considered in de Branges [4]. These Q would again
be spherical functions on spheres restricted to lower dimensional
spheres, except that the dimension is now generally fractional, so that the
group theoretic interpretation is only formal. We might still use group-
like arguments about positive definiteness, as in [6], but it is more
straightforward to work with explicit “sum of squares” solutions
generalizing (5.6). However, we will not pursue this line here.
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